A Novel Bidirectional LSTM and Attention Mechanism based Neural Network for Answer Selection in Community Question Answering

  • Haowen Wang Shanghai Normal University
  • Bo Zhang
Keywords: Question answering, answer selection, deep learning, Bi-LSTM, attention mechanisms

Abstract

Deep learning models have been shown to have great advantages in answer selection tasks. The existing models, which employ encoder-decoder recurrent neural network (RNN), have been demonstrated to be effective. However, the traditional RNN-based models still suffer from limitations such as 1) high-dimensional data representation in natural language processing and 2) biased attentive weights for subsequent words in traditional time series models. In this study, a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory (Bi-LSTM) and attention mechanism. The proposed model is able to generate the more effective question-answer pair representation. Experiments on a question answering dataset that includes information from multiple fields show the great advantages of our proposed model. Specifically, we achieve a maximum improvement of 3.8% over the classical LSTM model in terms of mean average precision.

Published
2020-05-21
Section
Articles on Computers