Empirical Comparisons of Deep Learning Networks on Liver Segmentation

  • Victor S. Sheng University of Central Arkansas
  • Yi Shen
  • Lei Wang
  • Wei Fang
  • Xuefeng Xi
  • Dengyong Zhang
Keywords: Liver segmentation; deep learning; FCN; U-Net; Segnet; Resnet; Densenet

Abstract

Accurate segmentation of CT images of liver tumors is an important adjunct for the liver diagnosis and treatment of liver diseases. In recent years, due to the great improvement of hard device, many deep learning based methods have been proposed for automatic liver segmentation. Among them, there are the plain neural network headed by FCN and the residual neural network headed by Resnet, both of which have many variations. They have achieved certain achievements in medical image segmentation. In this paper, we firstly select five representative structures, i.e., FCN, U-Net, Segnet, Resnet and Densenet, to investigate their performance on liver segmentation. Since original Resnet and Densenet could not perform image segmentation directly, we make some adjustments for them to perform live segmentation. Our experimental results show that Densenet performs the best on liver segmentation, followed by Resnet. Both perform much better than Segnet, U-Net, and FCN. Among Segnet, U-Net, and FCN, U-Net performs the best, followed by Segnet. FCN performs the worst.

Published
2020-05-21
Section
Articles on Computers